适配对象龙工临工装载机
发货地山东临沂
发货方式物流托运
型号30或50装载机
支持定制是
规格加长/标准
当铲斗前倾卸载后,操纵手动换向阀使其工作在左位时,动臂升降液压缸的活塞杆缩回,带动动臂下降。其油路为:
进油路:液压泵→手动换向阀中位→手动换向阀左位→动臂升降液压缸有杆腔。 回油路:动臂升降无杆腔→手动换向阀中→精过滤器→油箱。 ③折腰转向 轮式装载机的车架采用前,后车铰接机构,因此其转向机构采用交接车架进行折腰转向。装载机铰接车架折腰转向过程是由转向液压缸工作回路来实现的,并要求具有稳定的转向速度(即要求进入转向液压缸的油液流量恒定)。
通过压力表与流量表具体测量被测液压泵在额定转速下的输出压力与流量。具体测试方法如下:打开安全阀,使液压泵在额定转速下空载运转5-10min,测试时要注意泵的旋转方向应与其规定方向一致,关闭安全阀至适当压力(不**过液压泵的高工作压力),调节节流阀,观察压力表,使液压泵达到额定压力,观察流量表,测量液压泵在额定压力下的流量。装载机动力元件主要是液压泵。液压泵的检测主要是工作压力和流量两个性能参数。测试要在液压泵的标称额定转速下进行。装载机的液压泵多采用CB系列齿轮泵,在使用及测试中无可调元件,通过对额定转速下压力与流量的测量,可以了解该液压泵的具体性能指标,当压力或流量达不到规定的指标时,说明该液压泵达不到其标称参数,应修复或更换。
控制元件控制元件主要是变速操纵阀,转向随动阀,转向流量控制阀,工作装置液压系统操纵阀及各部分的溢流阀,安全阀等。 溢流阀,安全阀应根据液体的压力动作,并对液体的压力进行控制,其主要性能参数是控制压力。ZL40装载机除转向溢流阀为先导式溢流阀外,其余溢流阀及安全阀均为直动式,各阀均有调整手轮或调整螺母。测试时,通过手轮或螺母不断调整溢流阀或安全阀的控制弹簧压力来调整其工作压力。方向控制阀:装载机所用的方向控制阀主要是变速操纵阀,转向随动阀,转向流量控制阀,工作装置液压系统操纵阀,用以控制液压系统中液流的方向。ZL40装载机方向控制阀中的可调元件主要有变速操纵阀中的调压阀及工作装置液压操纵阀中的安全阀,其控制压力分别为1.5和15Mpa。其中,变速操纵阀中的调压阀为直动式,工作装置液压操纵阀中的安全阀为先导式,两者均通过调整螺母调整其工作压力。执行元件装载机执行元件主要是指液压缸。液压缸的主要功能参数是其动作机能和耐压性能。调试方法如下:打开两个单向节流阀,操纵换向阀,测试被试液压缸在空载时的运动情况,看是否有阻滞,停顿现象,使被试液压缸活塞杆分别处于液压缸两端,测量活塞杆可以移动的大距离是否符合使用要求,完全关闭两个单向节流阀,并使被试液压缸活塞杆分别处于液压缸一端,施加额定压力,打开量杯处的开关,用量杯测量其内泄漏量。使被试液压缸活塞杆分别位于液压缸两端,对两工作油腔分别施加1.5倍额定压力,保持数分钟,观察所有零部件是否有破坏或变形等现象,各接合面是否有漏油现象。对出现问题的液压缸,应进行更换或重新修理。
3.2装载机液压系统的检修与保养。在对液压元件进行测试与调整之后,还应对液压系统的整体进行细致的调试,以达到各元件的合理协调工作,保证液压系统工作的稳定可靠。液压系统的整测和调试包括空载调试和负载调试。在具测之前,要检查所要调试的装载机液压系统的安装是否正确,液压管路是否正确可靠,液压油牌号是否正确,是否符合清洁度要求,油箱内的油液高度是否符合要求,确定无误后,方可进行整体调试。为了保证装载机液压系统的整体性能和技术指标
空载监测和调试。并将各个液压元件的参数在系统中调整到规定的技术要求,使整机工作性能稳定可靠。调试时,先空载启动液压泵,以标定转速运转,检查液压系统传动装置是否有异常响声,同时,观察仪表盘上的油压及油温表示数是否正常,一切正常后,再进行下面的操作。确定液压泵工作正常后,依次操纵各操纵杆,使各执行元件分别在空载下运行,速度由慢到快,行程也要逐渐增加,直到低速全程运行以排除系统中存在的空气。接着在空载条件下。空载调试的目的是检查各液压元件在系统中工作是否正常使各执行元件在正常的工作程序下进行无负荷运行。检查各动作的正确性和协调性,检查各动作启动,停止,速度转换时的平稳性,检查是否有误动作和“爬行”,冲击现象。

大卸载高度下的卸载距离:动臂举到高点,保证卸载角为 45°,切削刃的 前点到整机(不包括工作装置)的前(一般为轮胎前缘)点的水平距离。地面位置收斗角:将铲斗放平在地面上收斗,此时,铲斗切削刃与水平面的夹角。 运输位置收斗角:将动臂放平运输位置(一般使动臂下铰点离地 400-500 mm 左右) 收斗,此时,铲斗切削刃与水平面的夹角。 轮胎滚动半径:轮胎中心线到地面的垂直距离。小离地间隙:机子的低点(不包括轮胎及工作装置)离地面的垂直距离。 前悬:铲斗放平,前轮中心至铲斗前缘的水平距离。 后悬:后轮中心线至车尾的水平距离。下挖深度:机子停在水平面上,动臂放在低点,将铲斗放平后再前倾 10度,此时铲斗低点至水平面的垂直距离。
离去角:从车尾的低点向后轮轮胎后部外廓(靠接地部位)作切线,此切线与水 平面的夹角。一般不小于 30°。转向角:装载机为铰接式转向。先将前后车架摆直,再将前车架转到大角度,此时,前车架相对于后车架所转动的角度。转弯半径:前车架相对于后车架偏转到大角度,以前后桥的轴线交点在地面上的投影为圆心,以机子外轮廓在在地面上的投影为半径画圆,此圆的半径即为转弯半径。 分为铲斗转弯半径,前轮转弯半径,后轮转弯半径以及车尾转弯半径。一般铲斗转弯半径大,水平通过半径为铲斗转弯半径,小转弯半径指轮胎中心小半径。
斗容,载重量,牵引力,掘起力,车速,大爬坡度,小转弯半径,动臂上升和下降及铲斗前倾时间,桥荷分配,下插力,倾翻载荷发动机功率即机的额定功率:在一定条件下,达到额定转速,发动机所能发挥的大功率, 也称车辆总功率或毛功率(Gross)。 测定发动机额定功率的条件(ISO 标准) :在 760 毫米柱高的大气压力,周围温度20℃和相对湿度60%的条件下,配备燃油泵和润滑油泵,水泵等附件。总体性能参数 发动机功率 额定功率分为多种:15min功率(一般为汽车用)1小时功率(工程机械用),12 小时功率(船舶,舰只用)。(10%) 发动机飞轮马力:是指在上述条件下除配备有上述附件外,另配备有水泵,发动机 风扇,发电机,空气压缩机及空气滤清器时所测得发动机额定转速时飞轮上实有功率。
装载机的额定载重量保证装载机必要的稳定性时,它所具有的大载重能力。 (或额定载荷) :装载机在满足以下三个条件:装备一定规格铲斗,大行驶速度不**过6.5km/h,在硬的,光滑的,水平地面上工作。 轮式装载机的额定载重量的大值不**过其倾翻载荷的 50%。对于履带式装载机不应**过35%。装载机在不行驶,不铲掘时,载重量可**额定载重量(Fork Lift)。
带有标准使用重量(即油箱注满,驾驶员 80kg 和不带其它附件时装载机自重) ,铲斗翻起到装满位置,动臂举升过程中,使铲斗动臂间铰销中心与车体前部水平距离在大的位置(水平位置) ,装载机后轮离开地面而绕着前轮与地面的接触点向前翻到时,铲斗中的大重量。 对于铰接式装载机,在技术性能里除注意在直线位置时的倾翻载荷外,还注意它的前车架相对于后车架在大转向角时的倾翻载荷值。倾翻载荷是指装载机停在硬的水平地面上它比装载机在直线位置时的倾翻载荷要小。因此,一般仅测量前车架相对于后车架在大转向角时的倾翻载荷值。只要这个值能满足要求即可。

由于单级式输出五个正转速度和一个反转速度,而多级组合式有正反各四档转速,已知变速器为**后三,且与单级传动变速器相比,组合传动式变速器可以用较少换档离合器和齿轮副获得较多的速度档数,可以获得较大的传动比和调速范围,则选择多级组合式传动方案。它的换挡方式有全部动力换挡和混合换挡两种,全部动力换挡,换挡时不必预先切断动力,可以直接操纵离合器换挡,换挡简便。故选择全部动力换挡。又已知装载机的额定载重量为5t,发动机的功率为P=162KW.则选择市场上变速器的型号为ZF4WG200定轴式液压换挡变速器。它配套的发动机功率在200KW左右,常用于五吨及六吨的装载机。
分动器的功用是将变速器输出的动力分配到各驱动桥,并且进一步扭矩。分动器也是一个齿轮传动系统,他单固定在车架上。其输入轴与变速器的输出轴用万向传动装置相连,分动器的输出轴有若干根,分别经万向传动装置与各驱动桥相连。 分动器类型及其特点:从结构和功能来看,分动器可分为两大类。一般齿轮式分动器和带轴间差速器的分动器。一般齿轮式分动器分配给前、后桥的转矩比例不定(随此两桥所受附着力的比例而变)。这样虽然会增加附着条件较好驱动桥的驱动力,但可能使该桥因**载而损坏。因此,目前采用这类分动器的汽车越来越少。则选取带轴间差速器的分动器。万向节传动轴是传动系的重要组成部件之一。传动轴选用与设计布置的合理与否直接影响传动系的传动性能。选用与布置不当会给传动系增添不必要的和设计未能估算在内的附加动负荷,可能导致传动系不能正常运转和早期损坏。
装载机的万向节传动,主要应用于非同心轴间和工作中相对位置不断改变的两轴之间的动力传递。安装在变速器输出轴与前后驱动桥之间。变速器的动力输出轴和驱动桥的动力输入轴不在一个平面内。装载机在转向时会使变速箱与驱动桥之间的相对位置和它们的输出、输出入轴之间的夹角不断发生变化。这时常采用一根或多根传动轴、两个或多个十字轴万向节的传动。图2.4为用于装载机变速箱与驱动桥之间的不同万向传动方案。
2.6 驱动桥的型式选择 驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。当驱动车轮采用非立悬架时,应该选用非断开式驱动桥;当驱动车轮采用立悬架时,则应该选用断开式驱动桥。因此,前者又称为非立悬架驱动桥;后者称为立悬架驱动桥。立悬架驱动桥结构较复杂,但可以大大提高车辆在不平路面上的行驶平顺性。 普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种工程机械、多数的越野汽车。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。 驱动桥的轮廓尺寸主要取决于主减速器的型式。在装载机轮胎尺寸和驱动桥下的小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也可以将*二级减速齿轮作为轮边减速器。对于轮边减速器:轮式装载机的轮边减速器一般为行星式,以减小其尺寸,获得大的传动比,且将其安装在轮毂内。

液压油箱用于向整个液压系统供油。在车辆采用湿式制动装置时,也可为整车制动系统供油。油箱中设置了回油过滤器,用于液压系统油路中的杂质,以保证液压油液的清洁度。
液压系统中的工作齿轮泵、转向+先导双联齿轮泵均安装在车辆的变速箱上。通过变速箱内的分动齿轮,由发动机提供动力,并向整个液压系统工作的提供压力油源。
组合阀安装在车辆右侧的后车架内,是先导泵向先导操纵阀供油路上的主要的压力控制元件。
先导操纵阀安装在驾驶室内,司机椅的右侧。先导操纵阀为叠加式两片阀,由动臂操纵联和转斗操纵联两个阀组组成。通过操纵先导操纵阀的动臂控制杆和转斗控制杆,可以操纵分配阀内动臂滑阀或是转斗滑阀的动作,从而实现对车辆工作装置的控制。动臂手柄的操作位置有提升、中位、下降及浮动四个位置,转斗手柄的操纵位置有收斗、中位和卸料三个位置。其中在先导操纵阀中,动臂提升、动臂下降、转斗收斗三个位置中设置有电磁铁,通过与前车架和摇臂上的动臂及转斗自动动臂油缸和转斗油缸是整个液压系统的执行元件,用于实现车辆动臂的提升及下降,铲斗的收斗及卸料等动作。车辆的工作装置采用了Z形反转六连杆机构使用了两个动臂油缸和一个转斗油缸。
动臂限位和铲斗放平控制装置安装在车架前部。其中动臂磁铁和动臂接近开关分别安装在动臂与前车架铰接附近及前车架动臂翼箱内。而转斗磁铁和转斗接近开关则分别安装在转斗与摇臂的铰接处及转斗油缸上。
二)系统原理 组合阀
在先导液压系统中,组合阀主要用于向先导操纵阀供油,其组成主要包括了溢流阀、减压阀及单向阀。
溢流阀为先导型滑阀,其作用是调定先导液压系统中的工作压力。先导泵的来油的一部分经从进油口1经油道2和节流孔3作用在锥阀阀芯4上,当油压升高并**过溢流阀调定压力时,油压克服调压弹簧5的作用力,推动锥阀阀芯向右移动,压力油经打开后的油口,通过油道6接回油口7。此时在节流孔3前后形成一个压力差,当溢流阀滑阀9两端的压力差足够大时,整个溢流阀滑阀9克服复位弹簧8的作用力向左移动。先导泵压力油溢流回油箱。
液压挖掘机行走装置的反力同时能使挖掘机作短距离行走,按结构不同,可分为履带式、轮胎式两类。履带式行走装置由履带、支重轮、托链轮、驱动轮、导向轮、张紧装置、行走架液压马达、减速机等组成,液压挖掘机的行走装置采用液压马达、减速机、驱动轮,每条履带有各自的液压马达和减速机,由于两个液压马达可立操作,因此,机器的左右履带可以同步前进后退,也可以通过一条履带制动来实现转弯,还可以通过两条履带相反方向驱动,来实现原地转向,操作十分简单。
http://sddongdajx.cn.b2b168.com