品牌龙工
型号转向/转斗/动臂
适配车型30/50装载机
发货地山东临沂
发货方式物流托运
包装木箱
发动机—变矩器—变速器(变速泵)—传动轴—驱动桥。其工作原理是:发动机动力经变矩器传递到变速泵,变速泵将一定压力的油液通过控制阀送至变速器内前进挡和后退挡离合器,通过不同的接合与分离,实现动力的切断和方向的变化;通过变速器内的机械换挡装置则可实现动力的传递和切断。机器不能行走,应检查变矩器、变速操纵装置和变速器变速泵。经检查,变矩器液压油的数量正常、无杂质,滤油器未堵塞,可排除变矩器有故障。
发动机的振动,噪音是装载机振动和噪音的 大来源。柴油机上的激振力可分为燃烧发生的直接激振力和柴油机工作时的机械力。柴油机上的噪声按其产生的机理可分为类,即空气动力性噪声,燃烧噪声和机械噪声,而排气系统中的空气动力性噪声通常是主要的噪声源,一般来说,如果能够有效地降低柴油机的排气噪声,就能大幅度地降低柴油机的总噪声级。
在正常情况下,柴油机噪声随其转速的增加直线上升。自然吸气式四冲程柴油机每增加10倍转速,噪声30dB,四冲程增压式柴油机每增加10倍转速,噪声增量为40dB。若在增速过程中出现噪声峰波,就是噪声源识别当中的问题所在,可以用1/3倍频程频谱分析,初步查明主要噪声成分。
在排气阀处,气体的流动是不稳定的,它以压力波动的方式,传到排气系统的出口,在尾管出口处,连速度波动产生了噪声,可见排气噪声来源于排气系统内的不稳定流动。排气噪声的定义通常指的是排气系统辐 的总的噪声,包括管壁和壁的噪声以及尾管出口的气动噪声,若将排气系统的管壁和壁假设为刚性的,则排气噪声指的是仅气体动力性噪声。降低排气噪声 有效方法就是设计安装一个,低阻力的排气。气体噪声排气噪声产生机理:柴油机工作过程中影响排气噪声的主要有发动机转速,气缸数,负荷,排气管尺寸等。
内燃机排气开始时,燃气温度约为800-1000℃,压力约为4-5Mpa,但排气阀打开出现缝隙时,废气以脉冲的形式从缝隙中冲出,形成能量很高,频率很复杂的噪声。根据排气过程产生噪声的机理,有以下几种成分。
气压力脉动声,流通过气门,气门座等处发生的涡流声,由于边界层气流扰动发生的噪声排气出口喷流噪声。多缸柴油机排气噪声的频谱中,低频出往往存在一个明显的噪声峰值,这个噪声就是基频噪声。由于各气缸排气是在的相位上周期性进行。因而这是一种周期性噪声。基频噪声的频率和每秒钟的排气次数,即爆发频率是相同的。基频噪声的频率计算公式为。
n——柴油机转速,(r/min)τ——内燃机冲程系数,四冲程τ=二冲程τ=1燃烧噪声通常把燃烧时气缸压力通过活塞,连杆,主轴承传至发动机机体以及通过气缸盖等引起内燃机结构表面振动而的噪声称为燃烧噪声。柴油机工作时燃烧室在短时间内发生高温高压的燃烧,急速地释放出能量。这种急剧的压力升高激发起发动机结构振动,从而出噪声。很明显,气缸压力是燃烧噪声的强制力,因此燃烧噪声与气缸压力有函数关系。f=Nn/60τ式中:N——柴油机气缸数此外还与发动机结构的刚度,发动机表面的声效应及周围空气的传递特性有关。
急燃期,缓燃期和后燃期。对柴油机燃烧过程的研究一般采用压力曲线(P—?中)分析的方法。图1是典型的气缸压力曲线。气缸压力与燃烧噪声都是周期现象,气缸压力的频率成分支配燃烧噪声的频率成分。将气缸压力与燃烧噪声都进行傅里叶分析可以了解到声压级与气缸压力级有明显的依赖关系是在较高的频段。不管从压力曲线图或频谱图析,很显然降低燃烧噪声的关键是控制燃烧压力的升高率。也就是说。柴油机的燃烧过程通常分为四个阶段——着火延迟期柴油机应力求选用柔和的工作过程。压力升高率取决于着火延迟和燃料喷射规律。因此,降低燃烧噪声的一般方法有两个方面:。
提高压缩比,适当延迟喷油提前角,使用十六烷值高的燃料。这类措施用于缩短着火延迟期。减小初期的燃料喷射率,利用进气涡流减少着火前的可燃混合气量。机械噪声由于柴油机上运动副很多,所以引起的机械激振力也很多,其中有活塞与气缸敲击产生的噪声,正时齿轮响声,燃油喷射系统噪声,配气机构噪声等。

操纵换向阀,测试被试液压缸在空载时的运动情况,看是否有阻滞,停顿现象,使被试液压缸活塞杆分别处于液压缸两端,测量活塞杆可以移动的 大距离是否符合使用要求,完全关闭两个单向节流阀,并使被试液压缸活塞杆分别处于液压缸一端,施加额定压力,打开量杯处的开关,用量杯测量其内泄漏量,使被试液压缸活塞杆分别位于液压缸两端,对两工作油腔分别施加5倍额定压力,保持数分钟,观察所有零部件是否有破坏或变形等现象。装载机执行元件主要是指液压缸。液压缸的主要功能参数是其动作机能和耐压性能。调试方法如下:打开两个单向节流阀各接合面是否有漏油现象。对出现问题的液压缸,应进行更换或重新修理。
在对液压元件进行测试与调整之后,还应对液压系统的整体进行细致的调试,以达到各元件的合理协调工作,保证液压系统工作的稳定可靠。液压系统的整体检测和调试包括空载调试和负载调试。在具体检测之前,要检查所要调试的装载机液压系统的安装是否正确,液压管路是否正确可靠,液压油牌号是否正确,是否符合清洁度要求,油箱内的油液高度是否符合要求,确定无误后,方可进行整体调试。2装载机液压系统的检修与保养为了保证装载机液压系统的整体性能和技术指标。
并将各个液压元件的参数在系统中调整到规定的技术要求,使整机工作性能稳定可靠。调试时,先空载启动液压泵,以标定转速运转,检查液压系统传动装置是否有异常响声,同时,观察仪表盘上的油压及油温表示数是否正常,一切正常后,再进行下面的操作。确定液压泵工作正常后,依次操纵各操纵杆,使各执行元件分别在空载下运行,速度由慢到快,行程也要逐渐增加,直到低速全程运行以排除系统中存在的空气。接着在空载条件下。空载监测和调试空载调试的目的是检查各液压元件在系统中工作是否正常使各执行元件在正常的工作程序下进行无负荷运行。检查各动作的正确性和协调性,检查各动作启动,停止,速度转换时的平稳性,检查是否有误动作和“爬行”,冲击现象。一般空载运行L-2h后,再检查油压,油温,泄漏等情况是否符合要求。
虽然在元件调试过程中进行了各种参数的调整与测试,在空载调试过程中,还要合理地调整系统中各个调压元件的压力值,以保证整个系统工作正常,稳定。因为系统压力值调整不当既会造成液压能的损耗,使油温升高,又会影响动作的协调性,直至使机械产生运行性故障。调节压力值要按使用技术规定或按实际使用条件,同时要结合实际使用的各类液压元件的具体结构,数量和管路情况作具体分析来确定调压范围。
是否能够实现预定的工作要求,如速度负载特性,泄漏是否严重,作业能力是否达到设计或维修要求,液压系统油温是否在允许范围内等等。负荷调试应在多种可能的工况下进行,测试其对各种工况的适应能力。整个调试过程要本着从简单到复杂,从单个动作到复合动作的原则进行,并测试工作装置的所有动作。在测试过程中,对压力,流量,温度,噪声,泄漏等进行全程监视,发现问题要及时记录下来。有严重问题发生时。负荷监测和调试负荷调试的目的是检查液压系统在承受负荷后要立即停机进行检查和排除。调试过程中,对于数值不准确的性能参数,要依其工作原理对有关调整装置进行调整,使整机调试过程中的各性能参数逐步趋于正常,调整无效时,要进行检查分析,找出原因,对有关元件进行修理或更换。

齿轮泵窜油”,即液压油将骨架油封击穿而溢出。此现象普遍存在,主机厂反映强烈,齿轮泵窜油严重影响装载机的正常工作和齿轮泵的使用可靠性及环境污染。为利于问题的解决,现对齿轮泵油封窜油故障的原因和控制方法进行分析。
1 零部件制造质量的影响油封质量。如油封唇口几何形状不合格,缩紧弹簧太松等,造成气密性试验漏气,齿轮泵装入主机后窜油。此时应更换油封并检验材质及几何形状(国产油封与国外油封相比质量差距较大)。齿轮泵的加工,装配。如若齿轮泵加工,装配有问题,致使齿轮轴回转中心与前盖止口不同心,会造成油封偏磨。此时应检查前盖轴承孔对销孔的对称度,位移量,骨架油封对轴承孔的同轴度。
致使密封环产生裂纹和划伤,造成二次密封不严甚至失效,压力油进入骨架油封处(低压通道),因而油封窜油。此时应检查密封环材质及加工质量。变速泵的加工质量。从主机厂得到的反馈信息,与变速泵组装在一起的齿轮泵油封窜油问题较严重,因此变速泵的加工质量对窜油也有较大的影响。变速泵装在变速箱输出轴上,齿轮泵又通过变速泵止口定位而装在变速箱输出轴上,如果变速泵止口端面对齿轮回转中心的跳动**差(垂直度)。密封环材质及加工质量。此若存在问题也会使齿轮轴回转中心与油封中心不重合而影响密封。变速泵加工,试制过程中,应检查回转中心对止口同轴度及对止口端面的跳动。
CBG齿轮泵骨架油封与密封环之间的前盖回油通道不畅通,造成此处压力升高,从而击穿骨架油封。通过对此处改进后,泵的窜油现象有了明显的改善。2 齿轮泵与主机安装质量的影响齿轮泵与主机的安装要求同轴度小于0.05。通常工作泵安装于变速泵,变速泵又安装于变速箱。如果变速箱或变速泵的端面对花键轴回转中心的跳动**差,形成累积误差,致使齿轮泵在高速旋转状态下承受径向力,造成油封窜油。
部件之间的安装间隙是否合理,齿轮泵外止口与变速泵内止口及齿轮泵外花键与变速箱花键轴内花键,两者间隙配合是否合理,都对齿轮泵的窜油有影响。因为内,外止口属于定位部分,配合间隙不宜太大,内,外花键属于传动部分,配合间隙不宜太小,以干涉。
齿轮泵窜油与其花键滚键也有关系。由于齿轮泵轴外伸花键与变速箱输出轴内花健有效接触长度短,而齿轮泵工作时传递的扭矩较大,其花键承受大扭矩而发生挤压磨损甚至滚键,产生巨热,以致造成骨架油封橡胶唇口,老化,从而出现窜油。建议主机厂选用齿轮泵时应校核齿轮泵轴外伸花键强度,保证足够的有效接触长度。
3 液压油的影响液压油清洁度**差,污染颗粒大,各种液压控制阀及管道内的粘砂,焊渣等也是造成污染的原因之因为齿轮轴轴径与密封环内孔间隙很小,油中的较大固体颗粒进入其间,造成密封环内孔的磨损,划伤或随轴旋转,致使二次密封的压力油进入低压区(骨架油封处),造成油封击穿,此时应过滤或更换新抗磨液压油。
液压油粘度下降,变质后,油液变稀,在齿轮泵高压状态下,通过二次密封间隙的泄漏,由于来不及回油,引起低压区压力升高,从而击穿油封。建议定期化验油液,选用抗磨液压油。当主机大负荷工作时间过长及油箱油面较低时,油温可升高到100℃,致使油液变稀,骨架油封唇口老化,从而引起窜油,应定期检查油箱液面高度,避免油温过高。

装载机液压系统油液发热,会造成操作不灵活、动臂自动下降、铲斗举升和翻转困难,以及工作压力降低等故障。
1、原因分析
(1)工作环境温度高
在炎热夏季连续工作,加之冷却效果差或散热不良,造成机器发热量大于散热量,使油温过高。
(2)长时间**负荷工作
装载机连续长时间在高压大功率下工作,溢流阀频繁开启,液压系统中油路和元件因长时间高压卸荷而使油液升温。
(3)液压泵发热
液压泵是产生热量的主要元件。液压泵转速高,排油压力高,工作环境恶劣,油液污染、油液选用不合规定或油液过少,都可造成泵损、泄漏。泵内泄漏可使其功率损失,磨损严重。油液中侵入空气后易于压缩,可造成泵。液压泵内长时间的泄漏、或压缩厉害, 必然发热,引起油液升温,造成系统发热。
2、故障实例
曾有一台装载机,在作业时出现铲土无力及操作不灵的现象。用手摸高压油管感到发烫,初步认定是液压系统发热所致。检查了液压泵,发现泵壳发烫,有噪声;检查液压油时,发现油液变质。分析认为,液压泵因油液污染而导致发热的可能性大,因而更换了液压油。更换时,先清洗了油管、油箱和过滤器;给系统加注了一定量的油液,循环操作几次后将清洗的油液排出; 后加入新液压油。这样处理后,发热现象还没有得到,后又考虑到可能因油液污染造成液压泵磨损和内泄大而发热,遂即又更换了液压泵(原液压泵解体后,发现磨损严重、配合间隙大)。试机表明,液压系统温度恢复了正常。
当装载机出现故障或产生异常情况时,先应停机,然后根据故障特征进行分析,初步判断故障性质,不宜强行带病作业,否则故障会随着工作时间延续而不断扩大。
故障原因的发生是由制造、操作、使用环境、保养等多方面因素造成。有些故障是相互影响的,例如,柴油机冷却液不足,不仅会使柴油机水温及机油温度异常升高,同时也将影响双变油温升高。因此,要在找出故障的真正原因后,对症排除解决。
对故障的检查和判断应尽量做到理论知识和实践经验相结合,采用视、触、听、嗅、测试等综合方式进行。
视:观察各仪表读数变化,各连接部件情况,各结合密封面泄漏情况,各油料及水有无异常现象及柴油机排气烟色等。
触:靠手的感觉检查各部件表面温度,连接状况及振动情况。
听:根据听觉来判断工作元件发出的声音及其变化情况来确定异响部位。
嗅:凭嗅觉来感觉各部件及各油料有无异常气味。
测试:条件允许时可按要求进行测试,根据测试结果分析故障原因。
通过以上方法对故障有了初步判断,在做好拆卸前的准备工作后,严格按照先后顺序拆卸,在拆卸过程中,应仔细认真地观察零部件的使用情况,并排放有序。为进一步确认故障原因,应保护好故障区原有迹象并做好记录,待故障原因查明后方可进行修复。
装载机使用中,如果出现换挡冲击,应先检查位于油室A的端间的阀体上的单向阀的节流孔有无堵塞。可以用压缩空气或细铜丝疏通。另外,由于只有弹簧蓄能器的活塞和主压力阀的阀杆的移动才能实现系统油压的变化,因此也需要检查活塞和阀杆有无卡死现象。根据实践经验,如果油路系统没有按照规定时间清洗,油液杂质过多,*导致节流孔的堵塞和活塞的卡死。这是导致换挡冲击的常见原因。
http://sddongdajx.cn.b2b168.com