品牌工程机械配件
品类装载机配件
发货地山东临沂
发货方式物流托运
适配车型30/50装载机
液压油油温升高,一般先检查哪里?先检查一下回油滤清器,打开回油滤看一下散布的粉末来判断问题,如果是上面有一些黄色粉末(铜粉),那十有是变速箱离合器损坏了。如果是白色粉末(铝粉),就是变矩器损坏了。可以很方便的判断。滤清器堵塞,液压油无法前往散热器回油散热,油温很*升高。如果判断油路问题,个就是检查滤芯,如果滤芯很干净,再去检查别的零部件。
1 液压系统油温过高的原因分析液压系统的油温过高,其原因很多,有设计方面的,也有加工制造和使用方面的,具体如下:液压系统设计不全理,造成先天性不足。ZL50装载机液压系统中未安装液压油冷却装置,系统散热仅靠液压油箱和管路来完成,且油箱容积较小,散热面积不大,而管路散热又十分有限,如果环境温度较高,则很难降低系统温度。
工作环境过高。工程机械液压系统 佳工作油温为35-55oC,允许 *作温度是65-70oC。而在炎热的夏天,工程机械在停机状态,系统温度就已接近40oC,当开始工作时,油温很见风使舵**过设计指标。油温高,使系统油液粘度下降,破坏了液压元件运动副间的油彩膜,致使金属直接接触,机械运转噪声将不断,同时增加磨损,导致液压元件出现其它故障和泄漏,从而又进一步使系统升温,形成恶性循环。
2 排除高温故障措施为了使ZL50装载机适应于夏季高温环境条件下作业睚不影响主机系统帮派有性能的前提下,可在液压系统中增设一个冷却器,从而加大冷却系统的散热面积。冷却器一般安装在液压系统的总回油管或溢流阀的回油管路中,特别是后者,油液在这些地主发热量 大。笔者对ZL50装载机油路系统进行技术履行时,就将冷却器安装在溢流阀的回油管路中,新增冷却器的容量,通过系统热平衡计算确定。
2.1 系统发热量计算根据现场油液的升温善,采用测量法,可按下求出系统的发热量。P1=VCpΔt/1000T式中P1-----发热功率,KW V----箱的效加热时间,现场测试取T=1hΔt----油液升温,取Δt=50oC Cp----油液的比热容,密度之积,取Cp=0.47Wh/L?oC。
考虑到油箱和其它液压元件的散热作用,应将上述计算结果再减去23%的修正值,帮液压系统总发热量为P1=8.6KW。2.2 热平衡计算该液压系统工作油液的设计温度为60-70oC。若从冷却器散热能力,降低系统工作油温也发,使系统的发热量全部由冷却器进行散热,则冷却器的散热面积可按下式计算。
A=P2/kΔtm式中 P2----冷却器的散热功率,根据热平衡的原理,总散热量应等玩于总发热量,故P2=P1 k----冷却器的传热系数,取下限值:k=35W/m2oK Δtm----油和空气之间的平均温度差。
Δtm=t2+t1 /2-t2‘‘+t1‘‘式中t1 ---- 冷却器液压油温度,取t1 =(273+oKt2 ---- 冷却器液压油出口温度,取t2 =(273+oKt1‘‘ ----- 冷却介质温度,取t1‘‘ =(273+oK。
t2‘‘ ----- 冷却介质出口温度,取t2‘‘ =(273+oK 故得Δtm=35oC将PK,Δtm 值代入式,则所需总散热面操作A=9.8m2。根据实际测量,该机箱有效散热面积约为2.2m甩以需新增加7.6m2和散热面积。就足以满足系统的工作要求。新增加冷却器选型为:FLQ0.65×0.46-2×(7.2/16Ⅲβ。
2.3 冷却器风扇驱动功率的计算选用轴流式风扇。风扇的风量应根据新增冷却器械的散热量赤计算,风扇的风量为:Qa=P3/3600ρCpΔt式中Qa----风扇的风量,m3/sP3----冷却器散热量,按散热面积等值分配,新增冷却器的散热量:P3=7KW。
Cp----空气的空夺比热容,取Cp=0.28Wh/KgoC ρ----空气密度,取ρ=1.29kg/m3Δt----散热温差,取Δt=10oC 故Qa=0.54m3/s风扇驱动功率表达式为:P4=Δpa?Qa/1000η。式中P4----风扇的驱动功率,kWΔpa----自由排风时的风压,一般可致Δpa=100-1000Pa,本文选 取Δpa=500Paη----轴流式风扇的效率,取η=0.4 故P4=0.7kW。

液力变速器是装载机的重要传动部什,主要由液力变矩器、多挡动力换挡变速箱、液压或电液控制系统等组成。由于其结构复杂、拆卸困难,为了能在整机装配前发现并排除故障,国内人多数变速器生产厂家选用空载试验台进行跑合试验,但空载跑合与实际工况相差甚远,不能反映变速器的设计和制造质量。为了使试验更接近于变速器的实际使用工况,及时发现空载试验不能检查出来的质量问题,发达在20世纪80年代已广泛利用加载试验台作为变速器的检验设备。与国内工程机械生产厂家常用的实际路试法相比,这种试验方法不仅试验成本低、省时省力、针对性强,而且具有很好的可控性、可观测性和重复试验精度,因而可以更加、准确地评价工程机械传动系统的质量和性能,为产品的改进、优化及新产品的研发提供良好的研究试验条件。
1、变速器台架试验方案
变速器台架试验的内容包括主要性能试验和可靠性试验,是工程机械传动系综合性能测试及产品研发的重要手段,对装载机产品质量与变速器研制均有重要意义。通过变速器测试台架在线检测,除了可检验变速器制造质量外,还可用于变速器维修、故障检测、动态性能凋试、改进设计参数及其它科科研应用。
变速器加载试验台按功率流的情况可分为两大类:一类为功率开放式,另一类为功率封闭式,功率封闭式又分为机械功率封闭式和电功率封闭式两类。功率开发式与封闭式方案的主要差别是能耗不同,功率开放式试验台如图1所示,原动机的能量通过被试验的变速器消耗于负载装置。这种方式对原动机能量的消耗较大,不宜进行人功率加载试验,但系统结构简单、配置灵活,并易于在运转过程中改变载荷,常用于非长期运转试验。
功率封闭型试验台如图2所示,这是为了克服开放型试验台能耗大的缺点而设计的。在封闭型方案中,加载装置输出的能量可以回馈到输入端,使能量重复利用,达到节能的目的,适合于需要长期运转的试验。根据能量封闭形式的不同,常用的有电功率封闭型和机械功率封闭型两类。
机械封闭式目前只能用于减速机、机械变速器等具有确定速比的场合,不适合具有液压离合器、液力变矩器等存在滑差的场合;电封闭式则能适合各种加载系统,其优点是输入功率70%可以重复利用,能量利用率高。
图3所示为变速器电封闭式加载试验台的传动系统示意图,这种试验装置从机械结构上来看是开式的,但从电能回馈使用的角度上来看是闭式的,因而能达到节能的目的。试验台主要传动结构包括驱动电机、联轴器、传感器、支座、支架、轴承座、升速箱及加载电机等,被试变速器由调速电机驱动,可实现无级凋速,加载电机通过升速箱实现负载模拟,变速器输入、输出端的转速和转矩分别出输入、输出端的转矩-转速传感器测量,变速器挡位压力、变矩器进口/出口压力、润滑油流量、油温、变速泵输出压力及流量等数据由相应的压力、温度、流量传感器测定。

装载机作业无力问题故障现象:一台50型装载机配置ZF变速箱和驱动桥,CUMMINS柴油机,用户常年在干涸河道采挖沙石料。使用1800余小时,用户反馈在加大油门前铲时装载机不能前行,轮胎时有打滑。故障分析:牵引力不足,牵引力大而地面附着力不足,轮胎磨损,作业场地湿滑,变速箱油品质量差,变质等。
故障诊断:先检查整车各系统,发现变速箱油位很高,并发觉油稀且油内气泡很多。放油至要求位。轮胎气压前轮0.5MPa,后轮0.45MPa,前轮放气至0.32MPa,后轮至0.30MPa。并增加附加配重200kg。
次测牵引力时,牵引力只有116kN,失速时柴油机转速1790rpm.。检查发现柴油机中冷器上有120mm左右的陈年裂缝,去修理厂补焊好再测牵引力,牵引力已达147kN,失速时柴油机转速2110rpm,但去沙场工作时故障现象未。
放空变速箱系统油并清洗,按量更换新ZF箱油,再去工地测试时机器已能正常工作。总结分析:变速箱混入了水并且由于用户自行换非油,油品变质没有达到ZF箱要求,作业时变速箱油产生气泡,导致变矩器工作时不能持续输出额定力矩,整机作业无力。
ZF变矩器油温高故障现象:一台ZL50C装载机,配置ZF变速箱,工作2个月后反映变矩器油温升高快,工作大约半小时就到1200C。由于是在生产作业现场,各种测试不易进行,已经更换变速箱,油散,换箱油,管路等,没有解决,但液压油温,水温一直正常。
故障分析:变矩器散热器堵塞,散热油管堵塞,变矩器内泄漏大,变速油压低,离合器打滑,冷却系统故障,油品质量差,变质,装载机持续过载作业等,故障诊断:由于之前已经将系统的各部件进行更换,拟从装载机动态作业进行检查。在驾驶室内进行作业操作,行进铲掘时,操纵收斗杆,感觉铲斗运动迟缓。检查发现,分配阀前,固定软轴位置的锁紧螺母松动,拉动软轴时,分配阀延迟活动。紧固该螺母,再次作业,油温处于正常温度。
总结分析:变矩器在失速状态下,发动机输出的能量,很大部分将转化为热能,在原来的散热条件下,变矩器油温度上升速度加快。由于分配阀操作软轴固定螺母松动,导致在铲装作业时,铲斗不能及时收起,而司机由于操作原因,往往还会加大油门前行,装载机因前有物料阻拦不能向前,变矩器经常处于失速状态,必然会使油温快速上升。

装载机有时会有齿轮泵油封和油煨现象。你知道是什么原因吗?今天这篇文章是供大家介绍的。装载机的齿轮泵油为什么会出现封窜油现象?“齿轮泵油”,即液压油将突破骨架油封。这种现象普遍存在,主机厂反映强劲,齿轮泵油严重影响了装载机的正常运行和齿轮泵的可靠性以及环境污染。为了便于解决问题,分析了齿轮泵油封失效的原因和控制方法。6吨级标准臂装载机。
件制造质量的影响油封的质量。如果油封唇的几何形状不合格,则紧固弹簧太松等,导致气密性试验泄漏,并且齿轮泵被装入主机然后被破碎。应更换油封并检查材料和几何形状。农用装载机齿轮泵的加工和组装。如果齿轮泵的加工和组装存在问题,则齿轮轴的旋转中心与前盖止动件不同心,这将导致油封偏心。此时,应检查前盖轴承孔对销孔的对称性和位移以及骨架油封与轴承孔的同轴度。
密封圈材料和加工质量。如果出现问题,密封圈会破裂并刮伤,导致二次密封不严格甚至失效。压力油进入骨架油封(低压通道),油封油。在这种情况下,请检查密封圈的材料和质量。3吨级标准臂装载机影响齿轮泵和主机安装质量。
齿轮泵和主机的安装要求小于0.05。通常,工作泵安装在变速泵上,而变速泵又安装在变速箱上。如果齿轮箱或变速泵的端面**出花键轴的旋转中心的公差,则会形成累积误差,导致齿轮泵承受高速径向力,导致油封慢化。
装载机齿轮泵出现油封现象的原因是上述,希望能引起大家的关注。还需要定期保护设备的使用寿命并使用正确的操作方法。小型装载机是常用的工程车辆之与农村地区的三轮车不同,在操作小型装载车时谨慎。浅谈小装载机的正确操作方法。
装载机正确的操作方法可以概括为:一个轻,两个稳定,三个远,四个硬,五个协调,六个禁止。灯:小型装载机工作时,脚跟靠近驾驶室地板,脚踏板和油门踏板保持平行,轻轻踩下油门踏板。*二稳定:小型装载机正在运行,油门始终稳定。在正常工作条件下,节气门开度约为70%。
三通:在小型装载机上作业时,脚踏板应与制动踏板分开并平放在驾驶室地板上。切勿踩刹车踏板。装载机通常适用于不平衡的工地。如果脚总是在制动踏板上,则机身的上下运动将使驾驶员踩下制动踏板。在正常情况下,需要通过控制油门减速度来控制状态和换档。叉装机系列这不仅避免了由频繁制动引起的制动系统过热,而且有利于装载机的速度增加。
特别是在铲运行中,当油门稳定时,通过循环提升起重机和铲斗杆,铲斗应装满物料。提升和转动操纵杆的循环称为“勤奋”。这个过程非常重要,对燃油消耗有很大影响。五协调装载机系列:协调是起重和转向杆之间的**配合。小型装载机的一般铲挖掘过程先将铲斗平放在地面上并平稳地朝向桩打开。当铲斗与桩平行以满足阻力时,应遵循先提升臂然后收集铲斗的原则。这可以有效地避免铲斗底部的阻力,从而可以充分利用 大挖掘力。四秦:在小型装载机上工作时严格禁止先,严禁滑倒轮胎。当小型装载机工作时,如果油门被阻力捕获,轮胎将会滑动。这种现象通常是由驾驶员操作不当引起的,这会增加燃料消耗并且是危险的。
如果发现铲土没力,先去跑一下车,如果跑车也不快,那就基本可以肯定是发动机问题,然后按照上面方法检查就可以,如果跑车很快的话,那就基本排除发动机问题了,这时步要做的就是检测工作液压系统的压力,看看具体数据,然后再按照实际的结果判断问题的出处,有些老师傅可以直接看出问题所在,那就是后话了。
http://sddongdajx.cn.b2b168.com