品牌工程机械配件
品类装载机配件
发货地山东临沂
发货方式物流托运
适配车型30/50装载机
提高动力矩曲线或降低阻力矩曲线,都可以增加提升能力。动臂的阻力矩是由动臂、铲斗、载荷的重量及重心位置以及摩擦力产生的。而为了保证工作装置有足够的强度和刚度,动臂、铲斗重量不宜改变,摩擦阻力也不容易减少。由此可见,减少阻力矩有一定的困难。提高提升能力的可行性方法是提高动臂缸的动力矩。由图1可知提高动臂在 大转角处θmax的力矩,就可以保证提升能力了。如果此处动力矩曲线在阻力矩曲线以上,那么其它各处就阻力矩曲线以上了。以下就以该处为计算依据,分析如何提高动臂的动力矩。
1 液压系统油温过高的原因分析液压系统的油温过高,其原因很多,有设计方面的,也有加工制造和使用方面的,具体如下:液压系统设计不全理,造成先天性不足。ZL50装载机液压系统中未安装液压油冷却装置,系统散热仅靠液压油箱和管路来完成,且油箱容积较小,散热面积不大,而管路散热又十分有限,如果环境温度较高,则很难降低系统温度。
工作环境过高。工程机械液压系统 佳工作油温为35-55oC,允许 *作温度是65-70oC。而在炎热的夏天,工程机械在停机状态,系统温度就已接近40oC,当开始工作时,油温很见风使舵**过设计指标。油温高,使系统油液粘度下降,破坏了液压元件运动副间的油彩膜,致使金属直接接触,机械运转噪声将不断,同时增加磨损,导致液压元件出现其它故障和泄漏,从而又进一步使系统升温,形成恶性循环。
2 排除高温故障措施为了使ZL50装载机适应于夏季高温环境条件下作业睚不影响主机系统帮派有性能的前提下,可在液压系统中增设一个冷却器,从而加大冷却系统的散热面积。冷却器一般安装在液压系统的总回油管或溢流阀的回油管路中,特别是后者,油液在这些地主发热量 大。笔者对ZL50装载机油路系统进行技术履行时,就将冷却器安装在溢流阀的回油管路中,新增冷却器的容量,通过系统热平衡计算确定。
2.1 系统发热量计算根据现场油液的升温善,采用测量法,可按下求出系统的发热量。P1=VCpΔt/1000T式中P1-----发热功率,KW V----箱的效加热时间,现场测试取T=1hΔt----油液升温,取Δt=50oC Cp----油液的比热容,密度之积,取Cp=0.47Wh/L?oC。
考虑到油箱和其它液压元件的散热作用,应将上述计算结果再减去23%的修正值,帮液压系统总发热量为P1=8.6KW。2.2 热平衡计算该液压系统工作油液的设计温度为60-70oC。若从冷却器散热能力,降低系统工作油温也发,使系统的发热量全部由冷却器进行散热,则冷却器的散热面积可按下式计算。
A=P2/kΔtm式中 P2----冷却器的散热功率,根据热平衡的原理,总散热量应等玩于总发热量,故P2=P1 k----冷却器的传热系数,取下限值:k=35W/m2oK Δtm----油和空气之间的平均温度差。
Δtm=t2+t1 /2-t2‘‘+t1‘‘式中t1 ---- 冷却器液压油温度,取t1 =(273+oKt2 ---- 冷却器液压油出口温度,取t2 =(273+oKt1‘‘ ----- 冷却介质温度,取t1‘‘ =(273+oK。
t2‘‘ ----- 冷却介质出口温度,取t2‘‘ =(273+oK 故得Δtm=35oC将PK,Δtm 值代入式,则所需总散热面操作A=9.8m2。根据实际测量,该机箱有效散热面积约为2.2m甩以需新增加7.6m2和散热面积。就足以满足系统的工作要求。新增加冷却器选型为:FLQ0.65×0.46-2×(7.2/16Ⅲβ。
2.3 冷却器风扇驱动功率的计算选用轴流式风扇。风扇的风量应根据新增冷却器械的散热量赤计算,风扇的风量为:Qa=P3/3600ρCpΔt式中Qa----风扇的风量,m3/sP3----冷却器散热量,按散热面积等值分配,新增冷却器的散热量:P3=7KW。
Cp----空气的空夺比热容,取Cp=0.28Wh/KgoC ρ----空气密度,取ρ=1.29kg/m3Δt----散热温差,取Δt=10oC 故Qa=0.54m3/s风扇驱动功率表达式为:P4=Δpa?Qa/1000η。式中P4----风扇的驱动功率,kWΔpa----自由排风时的风压,一般可致Δpa=100-1000Pa,本文选 取Δpa=500Paη----轴流式风扇的效率,取η=0.4 故P4=0.7kW。

原制动系统
ZL40D轮式装载机原制动系统由脚制动和手制动两部分构成。脚制动系统(图由空气压缩机、油水分离器、压力控制阀、加力泵组、脚制动阀、储气筒、钳盘式制动器以及管路等组成。
工作时,发劝机带动空压机,压缩空气经油水分离器和压力控制阀进入贮气筒 ,经客路进入脚制动阀;当系统压力**过0.7MPa时,压缩空气,上压力控制阀上的安全阀排出。制动时,踏下脚制动踏板,压缩空气分两路进入前、后桥加力泵组,高压油进入钳盘式制动器,推动钳盘式制动器活塞,将磨擦片压向制动盘从而制动车轮。松开脚踏板时,前、后加力泵组中的压缩空气由制动阀排入大气,制动状态解除。变速器的动力切断可通过选择阀选择切断或不切断动力的两种工况。
手制动系统是操纵自动增力双足内涨式,主要由操纵杆、软轴和制动器等组成。停止工作时,拉动操纵杆,通过软轴使制动器内两蹄片涨开压在制动毂上达到制动目的。
改进后的制动系统
改进后的制动系统如图2所示,增设了紧急制动阀、弹簧制气室、气控截止阀、快放阀、三通阀和手制动等元件。
改进后的制动系统工作原理:发动机拖动空压机,压缩空气经油水分离器、压力控制阀进入贮气筒,然后经三通阀分别进入脚制动和手制动阀。当气压达到 0.35MPa时,按下手制阀柄扭,压缩空气经快放阀,其中一路进入制动气室,克服气室内的弹簧推力,从而解除手制动;另一路进入气控截止阀,经乞控截止阀进入变速器离合器进适应入接合状态。行车制动时踏下脚制动板,压缩空气经脚制动阀,其中一路经三通阀进入前、后桥加力泵组,推动制液,进入钳盘式制动器的制动分泵。从而制动车轮;另一路进入气控载止阀,将气控截止阀进气口堵塞,使变速器切断阀自动进入空当位置。
当装载机遇到紧急情况时,在踏下脚动制动阀踏板的同时,拉出手制动阀手柄按钮,制动气室中的压缩空气经快放阀排出,手制动器在制动气室中弹簧力的作用下进入制动状态,变束器自动进入空档位置,提高驾驶员的安全性。
该系统也可实行自动控制,当贮气筒中的气压低于0.35MPa时,手制动阀手柄按钮自动弹起,说明气压太低不能进走,以免烧坏手制动器。
改进后的制动系统操纵简单、轻便、安全可靠,深受用户的**。

在制造装载机铲斗过程中,主刃板往往出现上拱,下塌,扭曲等变形,为保证主刃板平整,我们采用油压机进行整形,这不但延长了生产周期,增加了生产成本,而且增加了主刃板的内应力,为此我们对铲斗的结构和生产过程进行分析,找到了主刃板变形的原因,并制定相应的防止措施。
铲斗主刃板变形原因分析管理原因铲斗主刃板为板材气割下料后外协加工件,由于板材的装卸,运输,存储等原因造成主刃板出现上拱,下塌和挠曲变形。对前两种变形,组焊铲斗前可以在油压机上对板材进行校平,但对挠曲变形却难以调整,以至带到以后的铲斗组焊工序中去。
焊缝密集并且焊缝形式不合理使焊接工作量和热输入量都相当大,铲斗结构和背面焊缝布置。铲斗结构和背面焊缝布置同时由于主刃板的挠曲变形,使主刃板与斗底板,斗壁板对接间隙加大并且不均匀,当按图纸要求将各件组装后,经现场测量对接间隙中间部位分别为10mm和3mm时,两端间隙平均≥18mm和11mm,(见图1铲斗背面焊缝布置图中长点划线所示)。对接间隙的加大增加了焊接工作量和焊接热输入量。设计原因铲斗底部焊缝主要集中在背面间隙的不均匀使焊接热输入量不均匀,焊后冷却收缩变形量就会不均匀,这样各焊缝冷却后,就会使斗底板,斗壁板,板产生相应的焊接变形。
操作原因铲斗组焊过程分三步:斗壁板卷板,斗壁板与斗侧板组焊,对接主刃板,铺斗底板,与支撑板一起上胎组焊铲斗,焊接。这三步工序相互立顺序进行互不干涉。在斗壁板卷板时,因两端受力不均或压型线与斗壁板两边不平行等原因而出现扭曲,如图2所示,这样与主刃板对接后带动主刃板扭曲。
斗壁板扭曲变形图铺斗底板时,由于斗底板不平整或其他原因使斗底板局部高出两侧斗侧板或主刃板,破坏主刃板与两斗侧板构成的平面,组焊完铲斗后不能放平,误以为主刃板产生焊接变形,具体见图1铲斗结构图中所标局部高点。
焊接铲斗时没有从减小焊接变形的角度出发,按焊接工艺制定的焊接顺序执行,进行均匀对称焊接,尤其在焊接主刃板与斗壁板,斗底板的对接焊缝时,任意施焊,造成焊接热输入量过分集中,正反两面的焊接变形不能相互抵消,使主刃板产生焊接变形,见图3中长点划线所示。
铲斗主刃板焊接扭曲变形图这样各步工序产生的误差和焊接变形都集中到一起,致使铲斗焊接完毕后,主刃板产生变形。防止铲斗主刃板变形的措施加强管理铲斗主刃板外协加工回厂后,对平整度不符合要求的进行校平,对挠曲变形的,把与斗壁板对接的边缘采用半自动火焰切割机进割,这样经过处理后,保证了主刃板的平直。
改进设计将斗底板与主刃板对接间隙减小,由原来的10mm改为5mm,去掉与斗侧板5mm的对接间隙,与斗壁板之间长圆孔连续塞焊缝改为分布均匀的圆孔断续焊缝,具体改进见铲斗设计改进及焊缝布置通过以上改进可大大减少焊接热输入量和焊接工作量,焊接热输入量变得均匀而不集中,从而减小主刃板和焊接变形。

什么是单三元件变矩器?一级涡轮输出,三个原件组成的变矩器,就叫做单机三元件变矩器。像单涡轮的变矩器就叫做单三元件,比如山工变矩器,如果是双涡轮,那就是双四元件变矩器。我们常说的YJ375变矩器,其中375或者315是什么意思。
n型号含义:YJ37503Y——“液”的汉语拼音,个字母J——“矩”的汉语拼音,个字母375——泵轮,涡轮工作时,液体的有效循环圆直径03——变形序号n变矩系数通过变矩器后的扭矩倍数。例如:变矩系数“3”,及了发动机输出扭矩的 三倍。
为什么装载机上要装一个变矩器?发动机传递的动力是刚性的,当直接遇到大的阻力的时候会被憋熄火,所以变矩器的作用,当遇到大的阻力的时候,可以保护发动机,防止发动机熄火。*二个作用就是增加输出的扭矩,把原来刚性的动力变成柔性的液力动力。
液力变矩器位于发动机和机械变速器之间,以自动变速器油(ATF)为工作介质,主要完成以下功用:传递转矩。发动机的转矩通过液力变矩器的主动元件,再通过ATF传给液力变矩器的从动元件, 后传给变速器。无级变速。根据工况的不同,液力变矩器可以在一定范围内实现转速和转矩的无级变化。
自动离合。液力变矩器由于采用ATF传递动力,当踩下制动踏板时,发动机也不会熄火,此时相当于离合器分离,当抬起制动踏板时,可以起步,此时相当于离合器接合。驱动油泵。ATF在工作的时候需要油泵提供一定的压力,而油泵一般是由液力变矩器壳体驱动的。
同时由于采用ATF传递动力,液力变矩器的动力传递柔和,且能防止传动系过载发动机熄火。变矩器是如何传递动力的?我们可以先形象的打个比喻,当我们把两个风扇对着放在一起,打开其中一个,通过个吹出来的风,就可以带动*二个的转动。
变矩器的动力传递与之相似,但不是通过风来传递了,而是改成通过油来传递动力。泵轮通过弹性板与发动机飞轮连成一体,同速同向旋转,发动机高速旋转,迫使油液沿叶片间通道向外切向甩出。以大的速度和冲力冲击涡轮叶片。
涡轮是变矩器的被动轮。它外沿的叶片接受来自泵轮甩出的工作油液冲击之后,涡轮便产生旋转。同时内沿接受高速流出液流冲击在固定不动的导轮上的反作用力,实际上涡轮在两个力的作用下旋转,所以了输出扭矩。也就是说来自泵轮油液的动能又转换为涡轮旋转的输出机械能。
为什么叫做定轴式变速箱定轴指的是所有的离合器轴都是固定在箱体上面的。位置不变动的。且所有的轴都是平行的。50D,50F定轴式变速箱外观山工变速箱有前进4挡位,后退4挡位,总共8个挡位,这样可以更好的应对更多更复杂的工况。
山工变速箱的工作原理山工变速箱内虽然有离合器,但跟咱们常见的所谓的汽车离合器是不一样的。装载机的是靠油的压力把离合器片压紧来传递动力。其中前进离合器,后退离合器,3离合器,4离合器,所有的离合器的主动片和从动片都是一样多的。
从变矩器的进口压力阀开始分流,其中一路就进入变速箱,目的就是用这个压力油来压紧离合器,这个地方的压力呢,是1.4--1.7MPa。然后通过变速分配阀的控制,让油进入前进离合器,后退离合器,3离合器或4离合器,实现油的分流。
在工作过程中发现装载机这种液压系统发生此类故障很常见,看似严重的故障其实只要懂的一些诊断维修技巧,就可以快速处理此类故障,避免盲目错拆错换造成损失。
在进行以上所有拆卸操作前保证装载机大铲平放到地面,保证管路内没有残留压力,液压系统发生故障时液压油可能高温防止,分解时千万记清楚零件的顺序位置方便安装,如果装错了,主溢流阀肯定不起作用,轻者故障依旧,重者管路液压泵炸裂,亲身经历。
http://sddongdajx.cn.b2b168.com